MICROBIAL FERMENTATION

Biotechnology Lecture Ph. D. Students Dr. Sarmad Ghazi

AGENDA

Introduction.

- Fermentation media.
- Industrial microorganisms.
- Types of fermentation.
- Batch fermentation.
- Fed-Batch fermentation.
- Growth rate.
- Continuous fermentation.
- Effect of flow rate on substrate concentration.
- Important factors for continuous fermentation.
- Classification of fermentation.

INTRODUCTION

- The fermentation industry is composed of five major bio-ingredient categories.
- They are:
 - Proteins & amino acids.
 - Organic acids.
 - Antibiotics.
 - Enzymes.
 - Vitamins & hormones.

INTRODUCTION (CONT.)

Fermentation industry is driven by:

- The cost and availability of feed-stocks.
- The efficiency of industrial microorganism.
- Fermentation condition and optimization.
- Down stream process and end-product recovery efficiency.
- Fermentation by-product utilization.
- Utility consumption and labor cost.

FERMENTATION MEDIA

- Optimum balance of the media is mandatory for cells propagation and for the maximum production of target metabolite (end-product).
- Media compositions:
 - Carbon source.
 - Nitrogen source.
 - Minerals.
 - Growth factors.
 - Precursors (mutants).

INDUSTRIAL MICROORGANISMS

- Microbial screening.
 - Wild strains.
- Microbial yield improvement
 - Mutation.
 - Recombinant DNA.
 - Genetically engineered.
- Microbial selection.
- Industrial microorganism

TYPES OF FERMENTATION

Solid State fermentation (SSF).

Liquid State fermentation (LSF) Surface culture & submerged culture

SOLID STATE FERMENTATION (SSF)

- SSF process can be defined as microbial growth on particles without presence of free water.
- Particles are a solid culture substrate such as rice or wheat bran saturated with water and inoculated with (mold, yeast, bacteria) in controlled room temperature.
- ► It is ideal for growing filamentous fungi.
- It has been used in Asia and developing nations.
- It is more cost effective (smaller vessels lower water consumption, reduced waste water treatment costs, lower energy consumption, and less contamination problems).

SSF PROCESS AND APPLICATIONS

Applications:

- Potentially many high value products such as extra-cellular enzymes, primary metabolites, and antibiotics could be produced in SSF.
- It is estimated that nearly a third of industrial enzyme produced in Japan is made by SSF process.
- Production of organic and ethanol from starchy substrates.
- Digestibility of fibers and lignocelluloses materials for both human and animal consumption.

LIQUID STATE FERMENTATION (LSF) [SUBMERGED CULTURE]

- Submerged culture is performed in tanks which can reach in size for over 100,000 gallons.
- It is ideal for the growing unicellular organisms such as bacteria and yeast.

LSF methods:

- Batch fermentation.
- Fed-batch fermentation.
- Continuous fermentation.
- Semi-continuous fermentation.

Batch fermentation

- Considered to be a closed system.
- The sterilized media in the fermenter is inoculated with the microorganism.
- Incubation is allowed under the optimum conditions (aeration, agitation, temperature).
- During entire fermentation nothing is added except air, antifoam and acid/base.

FED-BATCH FERMENTATION

- It is enhancement of batch fermentation.
- Continue adding the nutrients (feeding) in a small doses during the fermentation.
- The method in controlling nutrients feeding process is by measuring methods.
- The main advantage of fed-batch fermentation is the elimination of catabolite repression (feed-back inhibition).

MICROBIAL GROWTH RATE

BATCH FERMENTER SYSTEM

CONTINUOUS FERMENTATION

- It is an open system.
- Continuously sterile nutrient is added and the converted nutrient is taken out from the fermentor.
- In continuous process cell loss as a result of outflow must be balanced by growth of the microorganism.

EFFECT OF FLOW RATE ON SUBSTRATE CONCENTRATION

The relationship between biomass (X), the concentration of limiting nutrients (C), and the dilution rate (D) are important factors in continuous

CONTINUOUS FERMENTER SYSTEM

IMPORTANT FACTORS FOR CONTINUOUS FERMENTATION

- The system must be stable for at least 500 hours.
- Maintaining sterile conditions for all period of fermentation time.
- The composition of nutrients must be constant all the time.
- Maintaining the strain stability for constant high production yield (concerning about reverse mutation).

SEMI-CONTINUOUS FERMENTATION

• Semi-continuous fermentations, in which a fraction of a fermentation is replaced with fresh media at regular intervals.

